EPCT-14 _Robbie Majzner
EPCT-14 GD2 CAR T-CELLS MEDIATE CLINICAL ACTIVITY AND MANAGEABLE TOXICITY IN CHILDREN AND YOUNG ADULTS WITH H3K27M-MUTATED DIPG AND SPINAL CORD DMG
Contact Presenter
Robbie Majzner, Sneha Ramakrishna, Aaron Mochizuki, Shabnum Patel, Harshini Chinnasamy, Kristen Yeom, Liora Schultz, Rebecca Richards, Cynthia Campen, Agnes Reschke, Jasia Mahdi, Angus Martin Shaw Toland, Christina Baggott, Sharon Mavroukakis, Emily Egeler, Jennifer Moon, Kayla Landrum, Courtney Erickson, Lindsay Rasmussen, Valentin Barsan, John Tamaresis, Anne Marcy, Michael Kunicki, Michelle Fujimoto, Zach Ehlinger, Sreevidya Kurra, Timothy Cornell, Sonia Partap, Paul Fisher, Gerald Grant, Hannes Vogel, Bita Sahaf, Kara Davis, Steven Feldman, Crystal Mackall, Michelle Monje;
Stanford University School of Medicine, Stanford, CA, USA
Background: We previously discovered high expression of the disialoganglioside GD2 on H3K27M+ gliomas and demonstrated preclinical efficacy of intravenous (IV) GD2-targeted chimeric antigen receptor (CAR) T-cells in preclinical models of H3K27M-mutated diffuse intrinsic pontine glioma (DIPG) and diffuse midline gliomas (DMGs). We are now conducting a Phase I clinical trial (NCT04196413) of autologous GD2-targeting CAR T-cells for H3K27M+ DIPG and spinal cord DMG. Here we present the results of subjects treated at dose level 1 (DL1; 1 million GD2-CAR T-cells/kg IV). Methods: Four patients (3 DIPG, 1 spinal DMG; ages 4-25; 1M/3F) were enrolled at DL1. Three subjects with H3K27M+ DIPG received 1e6 GD2-CAR T-cells/kg IV on study. One patient with spinal DMG enrolled but became ineligible after manufacturing and was treated on an eIND at DL1. An Ommaya reservoir was placed in all subjects for therapeutic monitoring of intracranial pressure. Subjects underwent lymphodepletion with fludarabine/cyclophosphamide and remained inpatient for at least two weeks post-infusion. Results: All subjects developed cytokine release syndrome (Grade 1-3) manifested by fever, tachycardia and hypotension. Other toxicities included ICANS (Grade 1-2) and neurological symptoms/signs mediated by intratumoral inflammation which we have termed Tumor Inflammation-Associated Neurotoxicity (TIAN). No evidence of on-target, off-tumor toxicity was observed in any patients. No dose-limiting toxicities occurred. CAR T cells trafficked to the CNS and were detected in CSF and blood. 3/4 patients exhibited marked improvement or resolution of neurological deficits and radiographic improvement. The patient treated on an eIND exhibited >90% reduction in spinal DMG volume but progressed by month 3. Re-treatment of this subject via intracerebroventricular administration resulted in a second reduction in spinal DMG volume by ~80%. Conclusions: GD2-CAR T-cells at DL1 demonstrate a tolerable safety profile in patients with H3K27M+ DIPG/DMG with clear signs of T-cell expansion and activity including clinical responses.
Contact Presenter
Robbie Majzner, Sneha Ramakrishna, Aaron Mochizuki, Shabnum Patel, Harshini Chinnasamy, Kristen Yeom, Liora Schultz, Rebecca Richards, Cynthia Campen, Agnes Reschke, Jasia Mahdi, Angus Martin Shaw Toland, Christina Baggott, Sharon Mavroukakis, Emily Egeler, Jennifer Moon, Kayla Landrum, Courtney Erickson, Lindsay Rasmussen, Valentin Barsan, John Tamaresis, Anne Marcy, Michael Kunicki, Michelle Fujimoto, Zach Ehlinger, Sreevidya Kurra, Timothy Cornell, Sonia Partap, Paul Fisher, Gerald Grant, Hannes Vogel, Bita Sahaf, Kara Davis, Steven Feldman, Crystal Mackall, Michelle Monje;
Stanford University School of Medicine, Stanford, CA, USA
Background: We previously discovered high expression of the disialoganglioside GD2 on H3K27M+ gliomas and demonstrated preclinical efficacy of intravenous (IV) GD2-targeted chimeric antigen receptor (CAR) T-cells in preclinical models of H3K27M-mutated diffuse intrinsic pontine glioma (DIPG) and diffuse midline gliomas (DMGs). We are now conducting a Phase I clinical trial (NCT04196413) of autologous GD2-targeting CAR T-cells for H3K27M+ DIPG and spinal cord DMG. Here we present the results of subjects treated at dose level 1 (DL1; 1 million GD2-CAR T-cells/kg IV). Methods: Four patients (3 DIPG, 1 spinal DMG; ages 4-25; 1M/3F) were enrolled at DL1. Three subjects with H3K27M+ DIPG received 1e6 GD2-CAR T-cells/kg IV on study. One patient with spinal DMG enrolled but became ineligible after manufacturing and was treated on an eIND at DL1. An Ommaya reservoir was placed in all subjects for therapeutic monitoring of intracranial pressure. Subjects underwent lymphodepletion with fludarabine/cyclophosphamide and remained inpatient for at least two weeks post-infusion. Results: All subjects developed cytokine release syndrome (Grade 1-3) manifested by fever, tachycardia and hypotension. Other toxicities included ICANS (Grade 1-2) and neurological symptoms/signs mediated by intratumoral inflammation which we have termed Tumor Inflammation-Associated Neurotoxicity (TIAN). No evidence of on-target, off-tumor toxicity was observed in any patients. No dose-limiting toxicities occurred. CAR T cells trafficked to the CNS and were detected in CSF and blood. 3/4 patients exhibited marked improvement or resolution of neurological deficits and radiographic improvement. The patient treated on an eIND exhibited >90% reduction in spinal DMG volume but progressed by month 3. Re-treatment of this subject via intracerebroventricular administration resulted in a second reduction in spinal DMG volume by ~80%. Conclusions: GD2-CAR T-cells at DL1 demonstrate a tolerable safety profile in patients with H3K27M+ DIPG/DMG with clear signs of T-cell expansion and activity including clinical responses.